Example 3.
Nonexistence of optimal controls

We have shown that substantial difficulties may arise in the process of solv​ing optimal control problems when analyzing the necessary optimality condi​tions. In particular, in some situations, the optimality conditions may hold for more than one control. This may happen if solutions of the problem are nonunique or if the optimality conditions are not sufficient. However, the opposite situation may occur as well, which is even worse.
Necessary optimality conditions in the form of the maximum principle may have no solution at all. If we try to use the method of successive approximations to solve a problem of this kind, then the iterative process will diverge for any initial approximation. The reason is that there are no optimal controls in this case.
In what follows, we establish the existence theorem for extremum prob​lems of the general form. The resulting statement will be used to analyze the optimal control problems considered in the previous chapters in the case where an optimal control exists and in the case where it does not exist.
3.1.   PROBLEM FORMULATION

As before, let the state of a system he described by the Cauchy problem
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(3.1)
The control и = u(t) is again chosen from the set
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The optimality criterion has the form
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Problem 3. Find a control 
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 that minimizes the functional I оn the set U.
In the previous chapters, we considered optimal control problems w the same state equation and the same set of admissible controls and simile quadratic optimality criterions. However, both terms in the integrand of the minimized functional had the same sign. If both terms are positive, the problem has a unique solution and the optimality conditions are necessary I and sufficient. If both terms are negative (which corresponds to the problem 3 of maximization from Example 1), then there exist two optimal controls, and the maximum principle is not a sufficient optimality condition. We shall show that the results turn out to be dramatically different from those obtained above if the functional contains terms with different signs.
3.2.    THE MAXIMUM PRINCIPLE
Following the well-known method, we define the function
H = H(u)  =р u  – (x2 – u2)/2.
Then the adjoint system is again described by the relations 
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For the control и to be optimal, it is necessary that it satisfies the maximum condition
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(3.3) 
From the stationarity condition (which requires that the derivative of H with respect to the control be equal to zero), it follows that и = p. However, the second derivative of H is positive (being equal to unity). Thus, we have the point of minimum rather than maximum of the function under consideration. I
Remark 3.1. We again point out the close connection between the necessary optimality conditions and the methods of analyzing functions for extrema. First, we find a stationary point, which is a solution of the neces​sary condition of the first order for an extremum. Then, since the necessary condition of the second order fails (the condition that the second derivative be nonnegative), we dismiss this point. A similar procedure was used in Problem 2'. First, a singular control was found (which was a solution of the maximum principle, i.e., an optimality condition of the first order). Then this solution was dismissed since it did not satisfy the Kelly condition (a necessary condition of the second order).
Under the present conditions, H may achieve its maximum only on the boundary of the set of admissible controls. We have
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Taking the maximum of these values, we obtain the formula
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                         (3.4)

Thus, we have relations (3.1), (3.2), and (3.4) for finding an optimal control, which is very similar to the systems of optimality conditions con​sidered before. In order to solve them, we can use, for example, the method of successive approximations. However, we shall analyze this problem using direct methods-
3.3.    ANALYSIS OF THE OPTIMALITY CONDITIONS

As follows from (3.4), the desired control must be a piecewise-constant func​tion, its points of discontinuity corresponding to the points where the func​tion p changes sign. For example, assume that the solution of the adjoint system is positive. Then the corresponding control is identically equal to unity, which follows from (3.4). Substituting this value into the state equa​tion, we find x(t) = t. Therefore, the solution of the adjoint system is
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This function assumes only negative values, which contradicts the assump​tion that p is positive.
Assume now that the function p is negative everywhere. Then the corre​sponding control is identically equal to —1. Solving problem (3.1), we obtain x(t) = -t. Substituting this function into (3.2), we have
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Hence, the solution of the adjoint system assumes only positive values, which contradicts the assumptions again.
Conclusion 3.1. A constant control cannot be a solution of the sys​tem (3.1), (3.2), (3.4).
However, it is not impossible for the control to have a discontinuity, while the corresponding solution of the adjoint system changes sign at some point. In particular, suppose that there exists a point 
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. Then formula (3.4) provides the control
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The corresponding solution of problem (3.1) for [image: image15.wmf]x
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 is x(t) = t. Taking into account that 
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It follows that the system state is
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We now find the solution of the adjoint system (3.2) for [image: image20.wmf]x
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:
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By assumption, this function must change its sign at 
[image: image22.wmf]x

=

t

, which implies 
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Two values of the parameter 
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 satisfy this equality. Since [image: image25.wmf]1
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 is a boundary point for the considered time interval, we conclude that there is a unique point 
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 at which the solution of the adjoint system can change its sign. We can now determine the solution of problem (3.2) for [image: image27.wmf]3
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It is interesting that p is negative for 
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, although the opposite result was expected. We have to conclude that there are no functions p with the desired properties. On the other hand, if we suppose that the solution of the adjoint system first assumes negative values and then positive values, we shall arrive at a contradiction again.
Conclusion 3.2. The system (3.1), (3.2), (3.4) cannot have a solution with a single point of discontinuity.
We can assume that the control has two points of discontinuity and, consequently, that p changes its sign twice. However, if suppose that it is positive on the first segment, we shall again arrive at a contradiction. The same is true for the assumptions of any given number of discontinuity points of the control.
Conclusion 3.3. The system (3.1), (3.2), (3.4) has no solutions.
Remark 3.2.  The above conclusion would not seem surprising if we noticed that problem (3.1), (3.2), (3.4) and the system of optimality conditions (1.1), (1.2), (1.4) differ only the sign of one of the relations. In the first example, after a certain assumption was made about the sign of p, we found a confirmation of this assumption, which yielded a solution of the optimality conditions. In the present situation, every assumption of this kind turns out to be wrong because the relations (1.4) and (3.4) have different signs.
It may first seem that this result is not that unfortunate. We already encountered systems of optimality conditions with no solutions, for example, the system (2.1), (2.2), (2.4). Moreover, the problem (2.11)-(2.13) coincides with the problem (3.1), (3.2), (3.4). In both cases, we were able to find optimal controls, although the corresponding systems were not equivalent to the maximum principle and the optimal controls turned out to be singular. The major difference between problem 3 and the above-mentioned problems is that it does not have singular controls and formula (3.4) is equivalent to the maximum principle (3.3). The reason is that the function H contains the squared control, so that it is impossible to get rid of it and make the maximum principle degenerate.
Conclusion 3.4. The maximum principle in problem 3 has no solutions.
We now try to understand what will happen if we formally use the method of successive approximations for solving the systems of optimality conditions. The corresponding iterative process obviously does not converge for any initial approximation. Moreover, converging algorithm of approximate solution cannot exist for this system because there are no possible limits for convergence in this case.
Conclusion 3.5. An iterative process for solving the optimality conditions in Problem 3 does not converge for any initial approximation.
Remark 3.3.  The worst thing here is that in practice we often have to use formal methods to solve a given problem, not knowing in advance whether the system of optimality conditions has a solution or not. In this case, it is hard to establish the real reason for the algorithm to not converge. It remains unclear whether this circumstance is caused by the absence of solutions or by some unfavorable properties of the algorithms itself, for example, the wrong choice of the initial approximations. It is certain, however, that the insolvability of the problem may be one of the min reasons for the algorithm to fail to converge.

Remark 3.4.  In the next example, we shall establish that in the case where a problem has no optimal control, the algorithm of solution may converge (although not to the solutions of the problem).

We now try to find out the consequences of the insolvability of the maximum principle. It is known that every optimal control must satisfy the maximum principle. Thus, the set of solutions of the necessary optimality conditions, in general, contains the set of optimal controls. However, under the present conditions, the set of solutions of the maximum principle is empty. This may happen only in the case where the optimal problem in question in unsolvable.
Conclusion 3.6. Problem 3 is unsolvable.
Remark 3.5.  The above considerations may cause some doubts. On one hand, we proved that there is no optimal control by establishing the unsolvability of the system of necessary optimality conditions. On the other hand, the derivation of the maximum principle seemed to start from the assumption of existence of an optimal control. It may seem that we are trapped in a vicious circle. First, we obtain the maximum principle assum​ing that an optimal control exits, and then we conclude that there is no optimal control because the maximum principle is unsolvable. It is easy to verify, though, that our conclusions are not contradictory. If there existed an optimal control, then it would satisfy the maximum principle. However, since the maximum principle has no solutions, our initial assumption that the optimization problem is solvable was false.
We now try to prove without using the maximum principle that there is no optimal control.
3.4.    UNSOLVABILITY OF THE OPTIMIZATION PROBLEM
Here we present a direct proof of the unsolvability of the optimization prob​lem under consideration. Prom the definition of the set of admissible con​trols, we obtain the inequalities
х2 (t) ( 0 ,  u(t)2 ( 1 ,  t((0,1).
Then the following formula holds for every admissible control:
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Thus, the values of the functional to be minimized on the set of admissible controls can be estimated from below.
Consider the sequence 
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Figure 15. The sequence of states corresponding to the controls (3.6).
We now estimate a solution 
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 of problem (3.1) corresponding to the control 
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. It is a continuous piecewise-differentiable function (see Figure 15). 
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Figure 15. The sequence of states corresponding to the controls (3.6)
For 2j/2k ( t < (2j+1)/2k , we have
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Similarly, for (2j + l)/(2k) < t < (2j + 2)/(2k), we have
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The obtained relations yield the following inequality (see Figure 16)
0 ( хk(t) ( 1/2k ,  t((0,1) ,  k = 1,2, … . 
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Figure 16. The state xk does not exceed 1/(2k)
Using condition (3.5), we have
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Passing to the limit as 
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As follows from (3.5), the value of the functional being minimized is not less than -1/2 at every admissible control. At the same time, for k sufficiently large, the value of the functional at uk given by formula (3.6) is as close to —1/2 as desired. Thus, 
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 is a minimizing sequence, i.e., a sequence of admissible controls such that values of the optimality criterion at these controls converge to its infimum on the set of admissible controls.
Conclusion 3.7. The infimum of the functional being minimized on the set of admissible controls is equal to —1/2.
Remark 3.6. The sequence 
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 is associated with an interesting fact which is irrelevant to the subject of our research. The length 
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, i.e., the limit of the sequence of the length of curves is not equal to the length of the limit curve. We conclude that the functional that maps every continuous function on [0,1] to the length of its curve is discontinuous.
From condition (3.5), it follows that the admissible control that provides the infimum of the functional on the set of admissible controls must ensure that the following two equalities hold:
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As is known, the system state is defined by the formula
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This equality implies that x is continuous if the control is integrable. Then the first equality in (3.7) implies that x is identically equal to zero. From equation (3.1), it follows that the corresponding control is also iden​tically equal to zero and therefore does not satisfy the second equality in (3.7). Hence, if the first equality in (3.7) holds, then the second one does not. At the same time, the functional can achieve its lower bound only if both of these equalities hold. Therefore, the functional never achieves its lower bound, which means that there is no optimal control in Problem 3.
Conclusion 3.8. The functional I never achieves its lower bound on U.
This result may seem particularly surprising. Indeed, for a given control we have a certain value of the optimality criterion. Another control cor​responds to another value of the functional being minimized. One of the selected controls must be better than the other according to this criterion. It is naturally to suppose that some control is be better than all the others since the set of admissible controls is bounded. Then how can we explain the unsolvability of the optimization problem?
The fact that there is no optimal control means that for any given con​trol there exists an admissible control that provides a smaller value of the functional. In particular, for any admissible control v, there is a number к such that the value of I at 
[image: image56.wmf]k
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 defined by (3.6) is less than I(v).
Remark 3.7. The described situation is completely similar, for exam​ple, to finding the minimum in the open interval (0,1). However small a positive number may be, there is a smaller one in (0,1). Although the in​terval is bounded, it has no minimum element because the smallest positive number does not exist. Since this fact is of no surprise, we should not think it is so much extraordinary that the considered functional has no minimum.
We now return to the sequence of admissible controls 
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 defined by (3.6). We know that this is a minimizing sequence, i. e., the corresponding values of the functional converge to its lower bound on the set of admissible controls. It may seem that the limit of this sequence can be an optimal control.
Indeed, if this sequence converges to a function u, it could be true that 
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 converges to the lower bound of the functional on the set of admissible controls; therefore, w could conclude that it coincides with I(u). Thus, the function и would be a solution of the problem which was proved to be unsolvable (using two different methods).
These contradictions are resolved by admitting that the sequence 
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 does not converge, i.e., it has no limit in any reasonable class of functions. Indeed, as k increases, the number of discontinuity points of the correspond​ing control increases (see Figure 14). Moreover, for any time interval, if k  is sufficiently large, then 
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 will have as many points of discontinuity in this interval as desired. Therefore, the minimizing sequence does not converge in all conventional classes of functions and an optimal control cannot be its limit.
Remark 3.8. In the sequel, we shall show that the minimizing sequence is not useless even if does not converge.
It would be good to find out a criterion that determines the solvabil​ity of optimization problems. First, it is interesting to know whether it is possible to establish such a criterion at all (before obtaining the optimality conditions). In one of the above examples we already established that there is no optimal control without even considering the optimality conditions. In addition, we could use Weierstrass's theorem, which states that every continious function achieves its minimum on a closed bounded set.
3.5.    EXISTENCE OF OPTIMAL CONTROLS

We present a result that states the shows the conditions of solvability for an extremum problem. Suppose that we need to find a function minimizing a functional I on a given set of admissible controls U. If I is bounded from below, then its range I(U) has a lower bound. This means that there exists a minimizing sequence, i.e., a sequence of elements 
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Assume that U is a bounded subset of a normed vector space V. Then there exists a positive constant с such that 
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 for all admissible controls. In this case, the sequence 
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[image: image67.wmf]c

v

£

||

||

 for all k. Let V be a Hilbert space, i.e., a complete vector space equipped with a scalar product. By the Banach—Alaoglu theorem (a generalization of the classical Bolzano—Weierstrass theorem to the case of infinite-dimensional spaces), {
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} has a subsequence that weakly converges in V. If we denote the subsequence by {
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We have established so far that there exists a weak limit of the minimizing sequence. But it is not clear if this limit belongs to the set of admissible controls. Suppose that U is convex and closed (and, consequently, contains the limits of every sequence of its elements that converges in the norm). It is known from the theory of Hilbert spaces that every convex closed subset I of a Hilbert space is weakly convex, i.e., it contains the limits of all weakly converging sequences of its elements. Since the minimizing sequence consists I only of the elements of U and weakly converges, it follows that its weak limit и belongs to U and is therefore an admissible control. However, it is not known whether the functional achieves its lower bound at u.
Assume that the functional I is convex and continuous. Every convex continuous functional is weakly lower semi continuous. This means that if 
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This inequality implies that the sequence {I(uk)} has converging subsequences, although it does not necessarily converge itself (which follows fro the Bolzano—Weierstrass theorem and the Banach—Alaoglu theorem). As follows from (3.8), since the functional is weakly semi continuous, I(u) does not exceed the lower bound of limits of all subsequences of {I(uk)}.
Since the subject of our consideration is not an arbitrary weakly converging sequence, but the one that minimizes the functional on U, {I(uk)} note only has converging subsequences, but converges itself to the lower bound of the functional I on U. Then inequality (3.8) can be written in the form
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which means that the value of the functional I at the element и does not exceed its lower bound on the set U. We established earlier that this element belongs to U.
Since none of the elements of a set of numbers can be less than its к bound, the foregoing relation turns out to be an equality. The value of the functional at the element 
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 is equal to its lower bound on U. Thus, the admissible control и is a solution to the problem in question.
Theorem 5. The problem of minimizing a convex lower semicontinuous functional bounded from below on a convex closed bounded subset of a Hilbert space is solvable. 
Remark 3.9. In general, the control does not necessarily have to be an element of a Hilbert space. The assertion of Theorem 5 also holds for re​flexive Banach spaces of the general form (and even for a more general class of spaces conjugate to Banach spaces) which also satisfy the assumptions of the Banach—Alaoglu theorem. The only difference, although minor, is con​nected with a more complicated definition of weak convergence: we cannot use the scalar product in the general case. An example of a reflexive Banach space is the space of functions that are Lebesgue integrable with any power greater than unity.
Remark 3.10. In the next example, we shall show that the existence of an optimal control can be established without the assumption that the set of admissible controls is bounded. In this case, an additional condition will be required to be imposed on the functional.
Remark 3.11. In Example 7, we establish the existence of an optimal control without using the assumption that the set of admissible controls is convex.
Remark 3.12. In Theorem 2, we obtained the conditions, under which the problem has no more than one solution, i.e., if a solution exists, then it is unique. Theorem 4 states the existence of a solution rather than its uniqueness. If the assumptions of both theorems hold, then the existence and uniqueness of solution is established. Thus, if we add the assumption that the functional is strictly convex to the hypotheses of Theorem 5, we shall obtain the assertion on the existence and uniqueness of solution.
We shall now try to use Theorem 5 to establish the existence of a solution to Problem 0, which was solved in the previous chapters.
3.6.    THE PROOF OF THE SOLVABILITY OF AN OPTIMIZATION PROBLEM

We now return to Problem 0. Its system was described by the relations
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The optimal control problem consisted in finding a function и = u(t) from the set 
U = { u |  | u(t) | ( 1,  t((0,1) }
that minimizes the functional
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Before using Theorem 5 for analyzing this problem, we must take into account that the functional depends on the control not only directly (through the first term in the integrand) but also through the system state. This fact was already mentioned when applying the theorem on the uniqueness of an optimal control to this problem.
We now find ourselves in an essentially new situation. As follows from the formulation of Theorem 5, in order to establish the existence of an optimal control, it is necessary to specify a function space to which the control function must belong. We choose the space 
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and the norm defined by the equality
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To be able to use Theorem 5, we must first verify whether the set of admissible controls and the functional to be minimized satisfy the corresponding properties. We already showed that the set of admissible controls is convex when establishing the uniqueness of an optimal control. In addition, we shall prove that this set is closed.
Assume that there is a converging sequence 
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It is known that if the sequence of elements of 
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 converges in the norm of this space, then there exists a subsequence that converges almost everywhere. Thus, there exists a subsequence of 
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Passing to the limit in this inequality, we obtain
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which holds for almost all 
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 are measurable, they can be arbitrarily altered on a set of zero measure. Hence, 
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Conclusion 3.9. The set U is closed and therefore weakly closed.
Thus, the set of admissible controls possesses all the necessary proper​ties. We now consider the functional to be minimized. It is obvious that it is bounded from below (by zero), and its convexity was established when proving the uniqueness of solution. It remains to prove that the functional I is continuous.
Suppose that 
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 in V. Using the state equation, we obtain
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where 
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 and x are the system states corresponding to the controls 
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 in the class of continuous functions and therefore in L2(0,1). We have
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From the definition of the set of admissible controls, it follows that every admissible control v satisfies the estimate
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The corresponding system state у satisfies the inequality
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which implies ||y|| ( t2/2. Hence, 
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Conclusion 3.10. The functional I is continuous and therefore weakly lower semicontinuous. 
Remark 3.13. We conclude that the property of weak continuity (or semicontinuity) is stronger then the property of strong continuity in terms of the type of convergence. In particular, if the functional is strongly con​tinuous, the convergence of the sequence of controls implies the convergence of the corresponding values of the functional. If the functional is weakly continuous, the same result follows from the weak convergence of the con​trols. The convergence of the values of the functional follows from the weak convergence of controls not as easily as from their strong convergence. That is why the property of weak continuity is considered to be stronger than strong continuity in this case. For this reason, we need the additional re​quirement of convexity to obtain the weak semicontinuity of the functional from its strong continuity (semicontinuity). Similarly, we can show that the property of being weakly closed for a set is stronger than the property of being strongly closed. The reason is that a weakly closed set must contain not only strong limits but also weak limits of its subsequences.
All the assumptions of Theorem 5 appear to be hold for the problem under consideration. Therefore, we can use this theorem to establish the existence of an optimal control for the extremum problem without solving it.
3.7.    CONCLUSION OF THE ANALYSIS

We have shown that there exist simple and reasonable optimal control prob​lems that have no solutions. We have also obtained a statement which allows us to prove the solvability of extremum problems of the general form. This statement was used to establish the existence of an optimal control for a specific optimization problem that was analyzed in the previous chapters. Now we are interested why the obtained theorem cannot be used to analyze Problem 3.
The sets of admissible controls in both examples are the .same. The state equations are also the same. Thus, these problems differ only in their optimality criteria. Since the set of admissible controls is bounded, using the connection between the state and the control in system (3.1), it is easy to prove that the functional in Problem 3 is bounded from below. Its continuity can be established in the same manner as for the functional of Problem 0. However, the squared control in the integrand has negative sign and therefore the functional is not convex. Thus, the assumptions of Theorem 5 do not hold, and it is no surprise that there is no optimal control. 
Conclusion 3.11. Problem 3 is unsolvable because the functional being minimized is not convex.
The question arises of whether the optimal control problem is unsolvable whenever the functional being minimized is not convex. We note that Ex​ample 2 dealt with the problem of maximizing a convex functional, which was equivalent to minimizing a concave functional. The assumptions of Theorem 5 fail for this problem as well (since the functional is not convex). Nevertheless, the problem has even more than one solution.
Conclusion 3.12. The optimal control problem may be solvable even if the functional being minimized is not convex,
Another question is connected with the minimizing sequence 
[image: image106.wmf]}

{

k

u

 for Problem 3 (the sequence of piecewise-constant controls with increasing num​ber of discontinuity points). This sequence is certainly bounded. Using the Banach-Alaoglu theorem the way we did in the proof of Theorem 5, we show that there exists a subsequence of 
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 weakly converging in 
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. However, we stated that this sequence does not converge. It cannot converge in the norm of L2(0,1).
Conclusion 3.13. The sequence 
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 converges weakly and does not converge strongly in 
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Remark 3.14. For the problem of minimizing a continuous functional, if the extremum problem is unsolvable, then every weakly converging mini​mizing sequence does not converge strongly.
We can prove that the function identically equal to zero is the weak limit of the sequence. It obviously belongs to the set of admissible controls (since this set is convex and closed and therefore weakly closed, it contains all weak limits of its sequences).
The question arises of why the weak limit of the minimizing sequence is not an optimal control. We know that the functional is continuous. Un​fortunately, this property is not sufficient for the weak convergence of the sequence of controls to imply the convergence of the sequence of functionals. The additional requirement is the weak continuity (or at least semicontinuity) of the functional. Since the functional is not convex, its strong continuity does not imply weak lower semicontinuity. Nevertheless, in this case we can assert that the functional being minimized is not weakly lower semicontinuous, because otherwise we could use the weak convergence of controls to prove that the corresponding weak limit is optimal. 
Conclusion 3.14. The functional being minimised in Problem 3 is continuous but is not weakly lower semicontinuous.
After all we have learned about the considered example, it may seem that the properties of the remainder terra in the formula for the functional increment are not important for us. We shall find out its sign anyway. As is known,
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 since neither the functional nor the state equations contain the terms depending on the control and the state simultaneously. The value of 
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As a result, the remainder term in the formula of the functional increment is nonnegative. Apparently, this should lead us to conclude that the maximum principle for Problem 3 is a necessary and sufficient optimality condition.
It may seem unreasonable to discuss the sufficiency or necessity of opti​mality conditions in the situation where the problem has no solutions. Nev​ertheless, as we mentioned before, the necessity of the system of optimality conditions only means that the set of its solutions, in general, contains the set of optimal controls, (Optimal control certainly satisfies the optimality conditions. See Figure 10.) In contrast to this, the sufficiency of the system of optimality conditions means that the set of its solutions, in general, is contained in the set of optimal controls (every solution of the optimality conditions is optimal). If the optimality conditions turn out to be necessary and sufficient, then the above-mentioned sets coincide. In the present ex​ample, both of these sets are empty; therefore, they coincide. This means that the result of our analysis of the remainder term in the formula for the functional increment is valid.
Conclusion 3.15. The maximum principle in Problem 3 is a necessary and sufficient optimality condition.
It might seem that an unsolvable optimization problem is totally mean​ingless. Apparently, there is no point in solving a problem with no solutions. However, we now recall that the lower bound of the functional on the set of admissible controls does exist. Then we may try find an admissible control such that the value of the functional at this control is as close to its lower bound as desired. This problem is well posed. For sufficiently large k, an element of the sequence 
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 defined above can serve as an example of such approximate solution. Indeed, any problem formulation reflects the studied phenomenon only to a limited extent. We only have approximate methods to solve equations and optimization problems. In this sense, our attempt to find an approximate solution is justified from both theoretical and practical points of view.
Conclusion 3.16. For unsolvable optimization problems, there may exist reasonable approximate solutions, i. e., controls that provide the values of the functional sufficiently close to its lower bound.
Remark 3.15. An assertion that a certain mathematical problem has no solutions is not really well defined. It is usually implied that there are no solutions in a particular class of objects. In most cases, however, it is possible to specify a larger class of objects such that the problem is solvable for this class.
The considered optimal control problem may have physical meaning. Suppose that we need to sail into the wind from a point A to a point В (see Figure 17). In this case, the control is represented by the angle of the sail to the wind; the system states are the coordinates of the sailboat. To reach the desired point B, the sailboat must move changing the angle of the sail to the wind from time to time (the trajectory 
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). If the passage is narrow, the sailboat must tack frequently (the trajectory 
[image: image117.wmf]2

s

).  Moving along the straight line AB means that the tacking frequency must be infinitely high.
Possible trajectories 
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 of the sailboat resemble the states x^ of system (3.1) corresponding to the minimizing sequence considered before (see Fig​ure 15). The segment AB represents the limit state of the system (which is, in a sense, an optimal state). However, no admissible control corresponds to this state. In the control theory, this situation is known as the sliding mode.
Conclusion 3.17. Unsolvable problems of optimal control may have physical meaning.
Remark 3.16. The fact that unsolvable optimal control problems can be meaningful both from mathematical and physical points of view testifies to the importance of studying such problems. In particular, we can consider the problem of finding minimizing sequences for unsolvable optimal control problems. This problem can be solved in the context of the extension of unsolvable optimal control problems.
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Figure 17. Sailing into the wind
Remark 3.17. In the considered example, minimizing sequences from quite a large class. In particular, this class includes the sequences of admissible controls of the unit norm weakly converging to zero (for example, various sets of periodic functions with infinitely frequency).

The system of optimality conditions can be represented in the form of a problem for a single unknown function. If a solution of the adjoint system is chosen to be this unknown function, then we obtain the boundary value problem
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(3.9)
where F(p) is the right-hand  side of (3.4)/ since problem (3.9) is equivalent to our system of optimality conditions, we can formulate the following conclusion.

Conclusion 3.18. The boundary value problem (3.9) has no solutions.

We now consider the nonlinear heat conduction equation
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(3.10)
with the boundary conditions
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(3.11)
and some initial conditions, where the function F is of the same form as in  (3.9). It is easy to see that an equilibrium state of the system (3.10), (3.11) is a solution of the boundary value problem
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which coincides with the problem (3.9) up to the notation.

Conclusion 3.19. The system (3.10), (3.11) has no equilibrium states.

SUMMARY
The following conclusion can be formulated on the basis of the presented analysis.

1. In the process of solving optimal control problems, the iterative process may fail to converge for every initial approximation, which can be caused by the fact that the optimality conditions have no solutions.

2. The optimality conditions have no solutions because of the unsolvability of the optimization problem.
3. The existence or non existence of an optimal control, in general, can be established without solving the optimization problem.

4. The problem may be unsolvable because the functional being minimized is nonconvex.

5. The optimal control problem may still be solvable if the functional is nonconvex.

6. If the optimization problem is unsolvable, the maximum principle may be a necessary and sufficient optimality condition, which implies that both the set of optimal controls and the set of solutions of the optimality condition are empty.

7. Unsolvable optimal control problems may have physical meaning.

8. If there is no optimal control, it is reasonable to formulate the following problem: Find an admissible control such that the value of the functional at this control is close to its lower bound as desired.
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